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Abstract Obtaining accurate estimates of remanent creep

life is of great importance to the power generating industry.

The small punch creep test promises to be a useful way

forward in this respect. However, a major concern with the

test revolves around the ability to convert small punch test

data into the required uniaxial equivalents. Experimental

results within the literature have given contradictory results

partly due to the large experimental scatter inherent within

the test and so this article reports some results from a

recently developed stochastic finite element model of the

small creep punch test that provides guidance on this

matter. The uniqueness of the model is based on its realistic

creep deformations laws, including strain hardening, ther-

mal softening and damage accumulation that enables it to

produce life predictions for virgin material as well as for

material with pre existing damage. It is shown that the

model produces excellent life predictions for virgin

0.5Cr–0.5Mo–0.25V steel and for damaged 1.25Cr–1Mo

steel over a wide range of test conditions. The model also

predicts that the dependency of the time to failure on

minimum displacement rates is such that small punch test

data can be converted into uniaxial data using relatively

simple analytical expressions.

Notation
_nij Strain rate tensor

et Total creep strain at time t (%/100)

ef Elongation at failure (%/100)

emin Minimum creep rate (s-1) from uniaxial

tests

ed,min Minimum displacement rate (mm(s-1))

from small punch test

hj Theta parameter used to describe a creep

curve (j = 1, 4)

Hi Natural log of hj
�Hj Mean value for Hj

Ĥi;j Randomly generated value for Hj

ĥj Randomly generated value for hj

�s Local Von Mises flow stress

sij Cauchy stress tensor

s0ij Deviatoric stress

sm Mean stress

cj Variance of hj

qj Mean variance of Hj

r* Normalised stress

r Stress (MPa)

aj,0, bj,0, cj,0,

dj,0

Parameters of the theta interpolation/

extrapolation function in the deterministic

model

aj,k, bj,k, cj,k,

dj,k

Parameters of the theta interpolation/

extrapolation function for the kth run of the

stochastic model

a, b, c, d Parameters of the failure strain

interpolation/extrapolation function in the

deterministic model

d Punch head displacement (mm)

mk, fk Parameters of the critical damage

interpolation/extrapolation function for the

kth run of the punch test model
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r, z Disc point coordinates

T Temperature (K)

tf Time at failure

U A randomly drawn number between 0 and 1

U(U)-1 A standard normal variate

ui Velocity field

V Velocity

Wcrit Continuum damage at failure

(dimensionless)

x1 Punch hole diameter (mm)

x2 Disc diameter (mm)

x3 Disc thickness (mm)

x4 Punch head radius (mm)

x5 Friction coefficient (0 B x5 B 1)

x6 Preexisting damage (dimensionless)

x7 Load (N)

Introduction

The life assessment and potential for failure of ‘‘in-ser-

vice’’ components is a critical issue in the safety and

reliability of operating power stations which are

approaching the end of their design lives. New policies

relating to environmental protection and safety at work,

together with major advances in analytical techniques for

life assessment—which suggest the initial safety factors of

these plants were unduly high—have made it more profit-

able to invest in the modernisation of existing plants rather

than in building new ones. However, such modernisation

only makes economic sense if existing plants have suffi-

cient residual life and so reducing the uncertainty in

evaluating remaining plant life is of primary importance to

the power generating industry.

However, traditional tests, such as the uniaxial creep

test, are not well suited to this problem. This is because of

insufficient material to sample and because the size of the

required sample could undermine the structural integrity of

the in-service component. The small punch test is an

innovative technique based on miniaturised specimens and

is a promising solution to this problem. The small punch

test was developed at MIT for radiation embrittlement and

first reported in 1981 [1]. It was then extensively developed

in Japan, particularly at Tohoku University [2]. The first

collaborative efforts in small punch test standardisation

were reported by the Japanese Atomic Energy Research

Institute (JAERI) in 1988 [3]. In the United States, further

work by Electric Power Research Institute (EPRI) and

Failure Analysis Associates (now Exponent) since the late

1980s [4] led to the introduction of the technique into

Europe from 1992 by Swansea University [5] and Electric

Research Association (ERA) in the UK and Centro

Elettroecnico Sperimentale Italiano (CISE) in Italy (now

CESI) [6, 7].

The small punch test (SP) is a semi-destructive tech-

nique because it uses a very limited amount of material,

with the specimens being discs of around 0.5 mm thick and

around 8–10 mm in diameter. Such small samples taken

from components in service not only leave the structural

integrity of thick components intact or at least repairable,

but allow also for the possibility of focusing on the critical

locations of the component (those areas that are more

highly stressed and damaged).

Despite these advantages, the power generating industry

has been slow to accept the use of this technique. This in

part reflects concerns that the reproducibility of the results

from such a test is highly dependent upon the geometry of

the specimen and the test apparatus. This concern can only

be overcome through the development and imposition of a

strong code of practice covering both testing and analysis.

The other major concern with the technique is that asso-

ciated with converting the small punch test data into the

required uniaxial equivalents. Solutions to these two

problems can be sought either through detailed experi-

mentation or through the computer modelling of the small

punch creep test.

On the experimental front and in Europe an important

push towards such standardisation has come from two main

sources. First, between 1994 and 1997 the Copernicus SP

project [8] developed a creep small punch test configura-

tion but no code of practice was agreed. Second, between

2000 and 2003, and inside the European Pressure Equip-

ment Research Council (EPERC]), a collaborative project

was set up among a few interested parties (CESI in Italy,

Joint Research Centre Institute for Energy of the European

Community (JRC) in the Netherlands and the University of

Swansea in the UK) that consisted of a creep round robin

exercise [9]. As a result of that exercise a step towards a

real code of practice was made. Over a more recent time

span the CEN (one of three European Standardisation or-

ganisations recognised by the EC) has been working to

produce a code of practice for the small punch creep test. In

2006 they published, as a Workshop Agreement, a CEN

code of practice [10]. With regard to test specimen

geometry they concluded that test specimens should mea-

sure 8 mm in diameter with a thickness of 0.5 mm and

these should be tested in an inert argon environment.

A major concern with this experimental approach is that

the large scatter known to be present in small punch creep

test data would make the identification of a suitable code of

practice problematic and inconclusive. To avoid this issue

of experimental scatter and so compliment the experi-

mental approach, Evans et al. [11, 12] developed an

elastic–viscoplastic finite element model of the punch

creep test, written in Salford Fortran, which produces as an
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output the displacement time curve up to the point of

fracture. The model uses the realistic creep deformation

law of Evans [13], which includes strain hardening, ther-

mal softening and damage accumulation. Unlike other

finite element models of the small punch creep test (e.g.

Hankin et al. [14]), these laws enable the model to be run

for any amount of preexisting continuum damage. In the

model, the displacement time curve is made a function of

the following variables which form the inputs into the

model: The hole diameter (x1), the disc diameter (x2), the

disc thickness (x3), the punch head radius (x4), the coeffi-

cient of friction (x5), the preexisting damage present in the

disc (x6) and the punch load (x7). The model is stochastic in

nature in that it has built into it experimentally measured

creep variability, so that confidence intervals for the

models predictions are also obtainable.

Evans and Wang [15] have made use of the finite ele-

ment model of the small punch test, together with a

response surface methodology, to determine whether there

is indeed a specific geometry (and hence a code of practice

for testing) that makes the test most useful. That is, max-

imises the sensitivity of the test to preexisting damage and

minimises the sensitivity of the test to the geometry of the

specimen and test apparatus. They found that the failure

time was most sensitive to disc thickness, hole diameter,

initial damage and the punch head radius but least sensitive

to disc diameter and load (see Fig. 1 for explanation of the

above variables). Under clamping, the optimum specimen

geometry was found to be one with a disc diameter of

9.2 mm and a disc thickness of 0.65 mm—both slightly

higher than that recommended by CEN. To be acceptable

as recommendations, the numerical model used above

requires detailed verification.

This article addresses this verification issue and also the

second issues raised above concerning the conversion of

small punch test data into the required uniaxial equivalents.

Measurements of minimum displacement rates from the

small punch creep test when plotted against time to failure

(tf) frequently show the same type of dependency of tf on

applied stress as observed in uniaxial creep tests, but with a

shift along the tf axis. This shift is different for different

materials and different test geometries. The main objective

of this article is to develop a better understanding of this

shift, its dependence on test parameters and whether it is

always parallel in nature. The experimental approach to

this problem has proved to be rather inconclusive with

some studies (e.g. Stratford et. al. [16]) showing minimum

displacement rates (from the punch test) and minimum

creep rates (from uniaxial tests) sitting on parallel lines

when plotted against tf on a log–log scale, while other

studies have shown them to sit on nonparallel lines (e.g.

National Physical Laboratory [17]). This article therefore

takes the alternative approach of using the results from a

finite element model of the small punch creep test to help

resolve this issue.

To meet this objective the article is structured as fol-

lows. The next section briefly discusses the materials tested

for this article. The following section provides a quick

overview of the small punch creep test model. This is

followed by a results section that is split into two parts. The

first part verifies the punch test model using both virgin

0.5Cr–0.5Mo–0.25V steel and pre-damaged 1.25Cr–0.5Mo

steel. The second part shows the Monkman–Grant type

results obtained from the model for 0.5Cr–0.5Mo–0.25V

steel and compares these to some uniaxial experimental

data. The final section concludes with recommendations for

future work.

The materials

The uniaxial creep testing on 0.5Cr–0.5Mo–0.25V was

carried out in the creep laboratories at the Interdisciplinary

Research Centre (Swansea) as part of a research pro-

gramme financed by the Engineering & Physical Science

Research Council and the Central Electricity Generating

Board in 1983. This was short-term accelerated constant

stress creep testing. All the tests were carried out in an air

atmosphere. The 0.5Cr–0.5Mo–0.25V material, supplied

by CEGB, consisted of fabricated header pipe and its

chemical composition (in wt.%) is shown in Table 1.

Following the standard heat treatment (10 h at 1,238 K,

15 h 973 K and 15 h at 933 K) for this material, it had a

yield stress of 263 MPa at 808 K and a yield stress of

191 MPa at 868 K. This data has appeared extensively in

the literature since it was first published by Evans et al.

[18].

Twenty-two test pieces, with gauge lengths of 28 mm

and diameters of 5 mm, were tested in tension over a range

=F x7

x4

x 2/1

A
B

C

F

d

r

z

G

x 2/2

daehhcnuP

x3

csiD

D

E

Fig. 1 Schematic of axi-symmetric small punch test (punch hole

diameter = x1, disc diameter = x2, disc thickness = x3, punch head

radius = x4, axial load (F) = x7. ABCDEFG are points on the discs

surface. z and r are disc point coordinates
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of stresses at 808, 838, 868 and 913 K using high-precision

constant-stress machines. At 808 K, five specimens were

placed on test over the stress range 250–350 MPa, at 838 K

eight specimens were placed on test over the stress range

175–310 MPa, at 868 K six specimens were tested over the

stress range 160–250 MPa and at 913 K three specimens

were tested over the stress range 128–200 MPa. The lon-

gest recorded failure time was 1,471 h. Up to 400 creep

strain/time readings were taken during each of these tests

and normal creep curves were observed under all these test

conditions.

The 1.25Cr–0.5Mo material was supplied by Ontario

Hydro, Canada, and was taken from new thick wall

seamless pipe and its chemical composition (in wt.%)

is shown in Table 1. This data was first published by

Stratford [16].

Experimental creep punch tests were conducted on both

0.5Cr–0.5Mo–0.25V and 1.25Cr–0.5Mo steel in a argon

environment. The 0.5Cr–0.5Mo–0.25V discs were cut from

the same virgin material described above. In total, 15 discs

with 9.0 mm diameter and a thickness of 0.5 mm were then

cut from the virgin material. (Note this disc thickness is as

recommended by CEN, but the diameter is closer to that

recommended by the analysis of the numerical modelling

results.) These discs were then tested at a single tempera-

ture of 848 K but over a load range of 170–420 N. The

1.25Cr–0.5Mo steel material described above was first

uniaxially tested at 848 K and at a constant load of

135 MPa. Under these conditions the material has a life of

around 536 h, but the specimen was removed from test

after 300 h (approximately three times the minimum creep

rate). Ten discs with 9.0 mm diameter and a thickness of

0.5 mm were then cut from the tested specimen. This pre-

damaged steel was then punch tested at temperatures of

848 and 903 K and over a load range of 170–300 N. The

experimental rig (see Fig. 1 for details) used a disc diam-

eter of 9.0 mm and a disc thickness of 0.5 mm. It had a

punch radius of 1.0 mm and a punch hole radius of

4.0 mm. No attempt was made to lubricate specimens and

the disc edges were rigidly clamped.

During all small punch creep tests described above,

measurements were made of punch displacement (in mil-

limetre) through time (in seconds) so that complete

displacement–time curves were derived. Displacement

rates (in millimetre/second) were then found by numeri-

cally differentiating this displacement–time data and

minimum displacement rates found by smoothing through

these displacement rates.

Finite element modelling of the small punch test

Figure 1 shows the punch test at some point where the

punch has been displaced a distance d. The initial disc had

a diameter x2 and thickness x3, the hemispherical punch has

a radius x4 and the punch hole a diameter x1. An axial load

F(= x7) is applied to the rear of the punch and this results in

deformation of the specimen disc (ABCDEFG are points

on the disc surface). Deformation is assumed to be visco-

plastic and at constant volume with deformation rates being

governed by the creep properties of the material. The

driving force for deformation is F but the disc sees this

through the interface AB(area = XAB). There are frictional

forces along XAB and therefore the distribution of normal

and shear tractions are not known a priori. Frictional forces

will be described by the constant shear rule,

k ¼ x5

�s
ffiffiffi

3
p ð1Þ

where 0 B x5 B 1 and �s is the local Von Mises flow stress.

The disc surface area CDEF is either clamped to prevent any

relative movement or unclamped. Clamped is taken to mean

that points on the disc surface adjacent to CD and FE are

restrained from movement in both the r and z direction.

Unclamped means that the same surface points are restrained

only in the direction of z. Figure 1 represents the test at one

instant and changes in the geometry occur with time as punch

penetration proceeds. Measured outputs from the test are the

displacement of the punch, d, as a function of time, the time

to rupture and the displacement to rupture. From this mini-

mum displacement rates are easily calculated.

At any disc configuration and neglecting body forces the

equilibrium equations are

sij;j ¼ 0 ð2Þ

where sij is the Cauchy stress tensor. For any arbitrary

perturbation of the velocity field ui
Z

V

sij;jdui dV ¼ 0 ð3Þ

and from the divergence theorem, the symmetry of the

stress tensor and imposing dui = 0 on essential boundary

conditions,

Table 1 Chemical analysis of test material in wt.%

Chemistry (%) C Si Mn Cr M0 Ni Cu Sn S P V

0.5Cr–0.5Mo–0.25V 0.12 0.26 0.58 0.34 0.66 0.2 – – 0.019 0.0009 0.26

1.25Cr–0.5Mo 0.16 0.56 0.35 1.29 0.44 0.07 – – 0.005 0.007 –

1828 J Mater Sci (2008) 43:1825–1835

123



Z

V

sijd _nij dV �
Z

XAB

Fidui dXAB �
Z

XCF

Fidui dXCF ¼ 0

ð4Þ

Fi are the local surface tractions at ui and _nij is the strain

rate tensor. For incompressible deformation
Z

V

s0ijd
_nij dV þ

Z

V

smd _nii dV

�
Z

XAB

Fidui dXAB �
Z

XCF

Fidui dXCF ¼ 0 ð5Þ

where s0ij is the deviatoric stress and sm the mean stress,

subject to the constraint

Z

V

_eii dV ¼ 0 ð6Þ

For the quasi-static situation of Fig. 1, Eq. 5 has been

solved by finite element methods and full details have been

given elsewhere [11] together with examples of the meshes

used and typical graphical outputs from the programme.

The equation has been discretised with eight nodded iso-

parametric quadrilateral elements with the constraint of

Eq. 6 applied by a penalty function procedure. Equation 5

and its discretised form are non-linear so that the solution for

the admissible velocity field must be approached iteratively.

Furthermore, the values of Fi are not known so that further

iteration is required to ensure that the total punch load is

equal to F. The iterative algorithm is given in [11]. The whole

problem is also geometrically non-linear and after each

stable iteration nodal coordinates are updated by a one-step

Euler algorithm. The updating also keeps account of punch

displacement as a function of time and of the current values

of the internal variables in the constitutive equation

including the accumulation of creep damage.

The high temperature creep properties used in the model

have been derived from extensive uniaxial and biaxial

creep testing of 0.5Cr–0.5Mo–0.25V and 1.25Cr–0.5Mo

steels at 565 �C [19, 20]. These multi-axial stress tests have

confirmed that the material behaves as a Von–Mises solid

(i.e. the Levy–Mises flow rule is obeyed). The general

constitutive relationship relating strain rate to current

material conditions has been derived as a phenomenolog-

ical internal variable model [13]. The basic rate equation

includes work hardening, thermal softening and creep

damage as internal variables and includes subsidiary

equations which govern the growth of these variables in the

creep situation [11]. In particular, the growth of creep

damage during the punch test can be followed.

While, for virgin material, the internal variables are

initially set to zero, this is not a necessary condition so that

the model can be run with any preexisting continuum

damage. Thus damage can be regarded as an independent

variable when running the model and simulations for

materials with preexisting damage are possible. Damage

has been assigned the variable x6. The creep experiments

have shown that fracture occurs when the accumulated

damage reaches a critical value [13, 20]. This value has

been shown to be a function of the current stress tensor and

this forms the basis of a fracture criterion which has been

incorporated in the punch test model. More specifically, at

a given load and temperature, the accumulated damage at

failure is given by

Wcrit ¼
1

h3

ef � h1 1� e�h2tf
� �� �

ð7aÞ

where tf is the time at failure, ef is elongation at failure and

h1 to h3 are the theta values used to describe the creep

curve for 0.5Cr–0.5Mo–0.25V and 1.25Cr–0.5Mo steels at

such a given load and temperature

et ¼ h1 1� e�h2t
� �

þ h3ðeh4;t þ 1Þ ð7bÞ

where et is the strain at time t. To calculate a value for

Wcrit, the punch test model obtains hj (j = 1, 4) and ef

values at any stress or temperature using the following

empirical relations

ln hj ¼ aj;0 þ bj;0rþ cj;0T þ dj;0rT j ¼ 1; 4 ð8aÞ

ln ef ¼ aþ brþ cT þ drT ð8bÞ

where T is temperature and r is stress. The failure time tf
(defined as the time to reach the failure strain) is obtained

by numerically solving

ef ¼ h1 1� e�h2tf
� �

þ h3 ehi tf þ 1
� �

ð8cÞ

These theta values, and the parameters in Eqs. 8, have

been published extensively and can be found, for example,

in Evans and Wilshire [21]. The value for x6 in the punch

test model can therefore be given a quantity between 0

(corresponding to no preexisting damage) and just below

Wcrit (corresponding to preexisting damage that exists just

before failure).

This punch test model can be made stochastic by taking

into account the variability in the estimated hj values as

measured by their variance, cj. Consequently, the parame-

ters of Eq. 7b and Wcrit in Eq. 7a are also subject to

uncertainty. The above deterministic model is made sto-

chastic as follows:

1. From a series of multiaxial tests produce estimates of

hj using the nonlinear optimisation procedure put

forward by Evans [22]. Then using the estimated theta

values produce estimates for the parameters aj,0, bj,0,

cj,0, dj,0 of Eq. 8a, and a, b, c, and d of Eq. 8b using the

weighted least squares procedure put forward by Evans

[22]. This makes Eqs. 8a, b operational. This equation

should be interpreted as determining the mean value

for Hj;
�Hj: That is,
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�Hj ¼ aj;0 þ bj;0rþ cj;0T þ dj;0riT ð9aÞ

where ln(hj) = Hj.

However, there is no reason to suppose that the

variance of each Hj will also depend on the test

conditions. The natural log of each hj is therefore

assumed to have the same variance given by the

average, over all test conditions, of the individually

estimated variances. Call this qj.

2. In the absence of any prior knowledge on theta

distributions, each hj is assumed to follow a log normal

distribution, implying that the ln(hj) = Hj, are

normally distributed. Thus, ln(hj) is taken to be

normally distributed with a mean and variance of

lnðhjÞ�Nð �Hj; qjÞ

Values for Hj can be drawn from this distribution using

Ĥj ¼ �Hj þ
ffiffiffiffi

qj

p

UðUÞ�1
h i

ð9bÞ

where U is a randomly drawn number between 0 and 1

and U(U) is the cumulative normal density function, i.e.

U(U)-1 is a standard normal variate. By drawing random

values between 0 and 1 for U (four at each of the test

conditions), Eq. 9b can be used to obtain simulated

values for each Hj at each test condition, and therefore

ĥj ¼ expðĤjÞ:
3. Using these simulated values for ĥj the following

regressions can be carried out

Ĥj;k ¼ aj;k þ bj;krþ cj;kT þ dj;kriT ð9cÞ

The parameters are again estimated using weighted

least squares. k = 1 in Eq. 9c.

4. For each of the stresses and temperatures that make-up

the test matrix of step 1, the punch test model obtains

interpolated values for hj, and ef by using Eqs. 9c and 8b.

tf is then obtained by solving Eq. 8c using these hj and ef

values. All these are then substituted into Eq. 7a to

obtain the simulated value of Wcrit at each test condition.

5. The empirical relationship between ln(Wcrit) and r and T

can then be established through use of a simple linear

regression. Linear least squares is applied to

ln Wcrit;k ¼ mk þ fk ln r� ð9dÞ

so as to obtain estimates for mk and fk, (k = 1) where

r� ¼ r
163309þ 127:1T � 0:1419T2

ð9eÞ

6. Select a variety of stress and temperature combinations

within the range of conditions defined by the exper-

imental test matrix in step 1. The punch test model is

then run at each of these test conditions, using the Wcrit

values obtained from Eqs. 9d and 9e until a failure

time is observed (i.e. until W = Wcrit). This produced a

complete time–displacement graph for each of the

selected test conditions (including the eventual failure

time of the disc). From these time–displacement

curves minimum displacement rates can be easily

calculated.

7. Repeated the above steps k = 1 to M times so that M

failure time predictions and time–displacement curves

are obtained at each of the test conditions selected in

step 6. In this article M = 15.

Results

Estimated values for hj, aj,0, bj,0, cj,0, dj,0 a, b, c, d, m and f

have been tabulated in a previous paper by Evans and

Wang [23] and readers are referred to that paper for further

details. All the predictions from the punch test model

shown in this article are derived using a friction factor of

0.35 (x5 = 0.35).

Verification results

0.5Cr–0.5M0–0.25V steel was selected for verifying the

model under undamaged conditions. Corresponding to step

6 in the above section, Table 2 contains the stresses chosen

to run the punch model. At all these stresses the tempera-

ture selected was 848 K. Substituting these test conditions

into Eqs. 9e and 9d yields predictions for critical damage at

these test conditions. The second column of Table 2 con-

tains these predicted Wcrit. The punch test model was then

run using the Wcrit values shown in Table 2 until failure

times were observed (i.e. until W = WCrit,i). These predicted

failure times are shown in the final column of Table 2.

The above steps were repeated another 14 times to yield

k = 15 failure time predictions at all the stresses shown in

Table 2. All these predictions, in seconds, are shown in

Table 3. At the bottom of Table 3 are the averages and

standard deviations of the 15 predictions at each test con-

dition. Figure 2 plots these 15 predictions at each stress

together with the average predictions at each load. As can

be seen, the scatter present in the 15 predictions also

appears to increase with decreasing stress. Figure 3 plots

the average predictions of Fig. 2 together with bars that

depict the range given by these averages plus and minus

three of their standard deviations. The experimental punch

test results described in the section ‘‘The materials’’ are

also superimposed on this graph. It appears that the punch

test model is replicating the experimental data very well.

All the data appears to be within these approximate 99%

confidence intervals and the scatter present in the experi-

mental data match the magnitude of these error bars.
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1.25Cr–0.5Mo steel was selected for verification of the

model under damaged conditions. Figure 4a plots the

experimental punch test results described in the section

‘‘The materials’’. At each temperature the experimental

results suggest that time to failure for these pre-damaged

discs varies with stress in a power law fashion. Also

superimposed onto the figure are a few punch test results

done on undamaged 1.25Cr–0.5Mo steel and the effect of

preexisting damage on failure time is easily observed.

Figure 4b plots the average predictions made by the punch

test model for the load conditions shown in Fig. 4a and at

848 K together with bars that depict the range given by

these averages plus and minus three of their standard

deviations. All the data appears to be within these

approximate 99% confidence intervals.

The predictions made for both damaged and undamaged

materials appear to fully validate the finite element model

of the punch test in that nearly all the experimental data

falls within the 99% confidence intervals for the models

predictions of the experimental data. The model is there-

fore a realistic description of the small punch creep test

when using virgin and damaged material.

Minimum displacement and creep rates

Plots of minimum displacement rate against failure time for

the small punch test frequently show the same type of

dependency as observed in uniaxial creep tests, but with a

shift along the time to failure axis. Figure 5a shows the

experimental data obtained on minimum displacement

rates (for the small punch test) and minimum creep rates

(from preexisting uniaxial tests held at the IRC Swansea)

for 0.5Cr–0.5Mo–0.25V steel. The minimum displacement

rates are those associated with the experimental failure

times in Fig. 3. The source reference for the uniaxial data is

[11] and corresponds to the 0.5Cr–0.5Mo–0.25V data set

described in the section ‘‘The materials’’. As can be seen,

the results do not sit on parallel lines as some other studies

have suggested [17]. It is debatable therefore as to whether

this similarity or not of the Monkman–Grant type relation

Table 2 Disc modelled failure times as determined by the damage

parameters given by Eq. 9d for a temperature of 848 K

Stress (MPa) Wcrit tf (s)

175 2.4756 3127422

200 2.64356 3127422

225 2.8011 1409683

250 2.9499 629114

275 3.09140 275961

300 3.2265 118580

325 3.3559 49447.6

350 3.4804 20108.5

375 3.6005 7925.84

400 3.7165 3031.13

425 3.8289 1140.5

Table 3 Disc modelled failure times associated with 15 runs of the stochastic model

k Stress (N)

175 200 225 250 275 300 325 350 375 400 425

1 3127422 3127422 1409683 629114 275961 118580 49447.6 20108.5 7925.84 3031.13 1140.5

2 2137233 920444 470446 254327 118627 59955.9 28219 12724.3 5180.49 1854.56 599.4

3 5338175 2738739 1393243 682261 316153 137367 55267.1 20820.1 7479.27 2595.49 893.3

4 5540062 2120225 789743 317912 130684 54441.8 22945 8999.76 3783.86 1547.18 607.6

5 3276386 1359214 613599 305172 139585 64818.3 26430.5 11665.1 5069.38 1916.6 702.4

6 7522151 3383550 1511116 662483 281401 115022 44923.4 16597.1 5883.17 1988.48 659.1

7 6968539 2323987 878895 376524 150788 59073 24548.7 9473.5 3775.86 1452.83 605.6

8 6332664 2931486 1370432 652174 300143 127731 51819.2 18497.3 6161.6 2007.38 641.2

9 6644043 2359151 832086 319872 137275 47591.5 18681.6 7913.55 3341 1292.75 487.5

10 11039790 4558597 1871664 756750 298431 114161 42300.1 15116.9 5212.65 1754.83 579.7

11 6.78E+6 3.15E+6 1.45E+6 657772 288198 120504 47874.2 17925.2 6375.1 2197.39 738.78

12 10946190 4277930 1664511 641349 235138 88422.8 33072.7 12411.1 4530.12 1644.99 594.0

13 6202046 2863317 1315426 594658 262242 112127 45776.6 17744.2 6551.93 2333.31 798.0

14 5559516 2829056 1417374 690661 321784 141095 57237.7 21518.4 7601.52 2613.25 873.7

15 8825701 3442292 1339560 517607 199101 75776.6 28607.3 10601.2 3896.9 1413.81 504.8

A 6415840 2825939 1222163 537242 230367 95777.8 38476.7 14807.8 5517.91 1976.27 695.0

S 2551126 955051.5 404836 172009 76028.5 32716.2 12912.0 4566.21 1491.18 499.878 172.0

The shown failure times are in seconds. A is the average of the 15 predicted failure times and S the standard deviation in these failure times
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is an intrinsic property of the small punch test or is due to

the expected scatter in both uniaxial and more especially

small punch test results.

An important objective of this article was to develop a

better understanding of this shift, its dependence on test

conditions and whether it is always parallel in nature. The

punch test model was therefore run 15 times over a wide

range of loads with a disc diameter of 9.0 mm, disc

thickness of 0.5 mm, punch radius of 1.0 mm and a punch

hole radius of 4.0 mm. The resulting 15 slope estimates of

the Monkman–Grant type relation are shown in Fig. 5b,

together with their average and the models prediction of the

95% confidence interval for this slope. Also shown is the

slope estimated from the uniaxial experimental data in

Fig. 5a together with its 95% interval.

Having taken into account creep variability, the results

from the punch test model suggest that the slope of the

Monkman–Grant type relation is the same in uniaxial as it

is in small punch test data—as revealed by the overlapping

intervals. The model therefore predicts identical slopes

within the intrinsic variability, so that there is not a sta-

tistically significant difference between the two slopes at

the 5% significance level. This parallel nature suggests that

it will be possible, from the outcomes of future research, to

convert small punch test data into uniaxial data using

simple analytical expressions.

Fig. 2 The k = 15 disc modelled failure times at 848 K using virgin 0.5Cr–0.5Mo–0.25V steel

Fig. 3 Failure times from experimental punch tests together with the modelled predictions at 848 K for virgin 0.5Cr–0.5Mo–0.25V steel
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A number of possible avenues suggest themselves. By

comparing the model’s failure time predictions for varies

loads at the optimal test and specimen geometries identified

by Evans and Wang [12] with the experimental uniaxial

failure times at varies accelerated stresses (both at a given

temperature), it should be possible to derive an equation

giving the stress corresponding to a particular punch

load—F = f(r). (As a lot of short-term uniaxial data is

already available, so this presents no additional experi-

mentation). Using this relation the model can be run at the

load corresponding to operating stresses and the time to

failure recorded. Alternatively, a disc can be cut from an

in-service component and put on test at a load corre-

sponding to the operating stress until the minimum creep

rate is observed (the test can then be discontinued). This

rate can then be inserted into the Monkman–Grant relation

implied by the small punch test model to predict when the

disc will fail. This procedure will work because, as shown

by Evans and Wang [23], the Monkman–Grant relation

predicted by the model is the same at all levels of preex-

isting damage. Then a parallel adjustment to this failure

time will give a prediction of the components remaining

life.

Conclusions

The small punch test is an innovative technique based on

miniaturised specimens and is a promising solution to the

problem of undermining the structural integrity of operating

components through the extraction of large test samples. It

was found that this model was capable of producing accu-

rate predictions of disc life for disc samples cut from virgin

0.5Cr–0.5Mo–0.25V and damaged 1.25Cr–0.5Mo steel. For

both materials it was found that the average predictions

from the model at each test condition were in broad

Fig. 4 (a) Failure times from

experimental punch tests for

damaged and virgin 1.25Cr–

0.5Mo steel. (b) Failure times

from experimental punch tests

together with the modelled

predictions at 848 K for

damaged 1.25Cr–0.5Mo steel
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agreement with the experimental data and that all the data

appeared to be within the approximate 95% confidence

intervals for these predictions. Having taken into account

creep variability in this verified model, displacement rate

results from the punch test model suggest that the slope of

the Monkman–Grant type relation is the same in uniaxial as

it is in small punch test data. The next step is to use the

numerical model to identify precisely the nature of the small

punch—uniaxial test correlation.
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